Неудобные факты о зеленой энергетике | Первый творческий форум ЦРТП

Неудобные факты о зеленой энергетике

omnius

Креатор
Регистрация
23 Сен 2021
Сообщения
52
Реакции
217
Семь неудобных фактов о «зелёной» энергетике

Идея использования возобновляемых источников энергии, безусловно, звучит привлекательно, но само название обманчиво. Большинство возобновляемых источников энергии, за исключением древесины и навоза, на самом деле сильно зависят от ископаемого топлива.

1. Затраты на передачу энергии намного выше, чем у других видов электроэнергии

В большинстве исследований не учитывается тот факт, что они никак не компенсируются.

Исследование, проведённое Международным энергетическим агентством в 2014 году, показывает, что затраты на передачу для ветра примерно в три раза превышают затраты на передачу электроэнергии от угля или ядерной энергии.

Количество избыточных затрат имеет тенденцию к увеличению, так как неустойчивые возобновляемые источники энергии получают всё большую долю в общем объёме.

Вот некоторые из причин более высоких затрат на передачу для ветра и солнца:
  • Необходимо построить непропорционально больше линий для ветровой и солнечной энергии, поскольку линии электропередач необходимо масштабировать до максимальной, а не средней мощности. Выработка энергии от ветра обычно доступна от 25% до 35% времени; солнце — от 10% до 25% времени.
  • Как правило, между тем, где происходит использование возобновляемой энергии, и тем, где она потребляется, расстояние может быть гораздо больше, по сравнению с традиционным производством.
  • Возобновляемая электроэнергия и установленное вспомогательное оборудование не обладают таким же уровнем контроля над аспектами энергосети (мощность тока, амплитуда и так далее), в отличии от электростанции, работающей на ископаемом топливе. Поэтому в систему передачи должны быть внесены исправления, которые потребуют дополнительной инфраструктуры, а соответственно, и новых затрат.
2. При передаче электроэнергии на большие расстояния возрастают расходы на обслуживание линий электропередач

Если не будет должного обслуживания, возможны пожары, особенно в сухих, ветреных районах.

Последние данные свидетельствуют о том, что ненадлежащее обслуживание линий электропередач (ЛЭП) увеличивает вероятность пожаров.

В Калифорнии халатное техническое обслуживание привело к банкротству энергосистемы Северной Калифорнии PG & E. В последние недели PG & E инициировала два профилактических отключения питания, одно из которых затронуло до двух миллионов человек.

Техасский проект по смягчению последствий лесных пожаров сообщает: «ЛЭП вызвали более 4000 пожаров в Техасе за последние три с половиной года».

Венесуэла обладает ЛЭП большой протяжённостью: от своей главной гидроэлектростанции до Каракаса. Похоже, что одно из отключений в этой стране было связано с пожарами вблизи ЛЭП.

Есть решения, чтобы предотвратить пожары, например, зарыть линии под землю. Или использовать изолированный провод вместо обычного провода. Но любое решение имеет свою стоимость. Эти затраты необходимо учитывать при моделировании косвенных затрат в том случае, если мы предполагаем использовать дополнительно большого количества новых возобновляемых источников энергии.

3. Потребуются огромные инвестиции в зарядные станции

Чтобы кто-либо кроме представителей самых обеспеченных слоёв населения смог пользоваться электромобилями.

Понятно, что люди с высоким доходом могут позволить себе электромобили. У них обычно есть гаражи с доступом к электричеству. И они могут легко заряжать автомобиль, когда им удобно.

Загвоздка в том, что основная масса зачастую не имеет аналогичных возможностей для зарядки электромобилей. Она также не может позволить себе тратить часы в ожидании зарядки своих автомобилей.

Понадобятся недорогие станции быстрой зарядки, расположенные повсеместно, если электромобили станут основным выбором. В стоимость быстрой зарядки, вероятно, потребуется включить плату за содержание дороги, поскольку это одна из тех затрат, которые сегодня включены в цены на топливо.

4. Прерывистость способствует росту затрат

Распространено мнение, что с перебоями можно справиться путём небольших изменений, такими как ценообразование по времени, «умные» энергосистемы и отключение электроэнергии для некоторых заранее выбранных промышленных потребителей, если для всех не хватает электроэнергии.

Такой подход теоретически может иметь место, если система основана на энергетике из ископаемого топлива и энергии атома, к которым присоединяют небольшой процент возобновляемых источников энергии. Ситуация меняется по мере добавления в сеть возобновляемых источников энергии.

После того как в электрическую сеть добавляется даже небольшой процент солнечной энергетики, необходимы батареи, чтобы сгладить быстрый переход, который происходит в конце дня, когда работники возвращаются домой, чтобы поужинать, когда солнце уже село. Также нужно иметь в виду перебои с электричеством из-за остановки ветровых турбин во время штормов.

Есть и другие проблемы. Сильные штормы могут нарушить электроснабжение на несколько дней в любое время года. По этой причине, если система будет работать только на возобновляемых источниках энергии, необходимо иметь резервный аккумулятор, который бы имел запас как минимум на три дня.

В коротком видео ниже Билл Гейтс выражает беспокойство по поводу идеи использования трёхдневной резервной батареи на примере города Токио.

Сейчас количество батарей ничтожно для того, чтобы обеспечить трёхдневное резервное питание для электроснабжения всего мира. Если мировая экономика будет работать на возобновляемых источниках энергии, потребление электроэнергии должно вырасти по сравнению с сегодняшним уровнем, что ещё больше усложнит хранение трёхдневного запаса электроэнергии.

Гораздо более сложной проблемой, чем трёхдневное хранение электроэнергии, является необходимость сезонного хранения, если возобновляемые источники энергии будут использоваться более-менее широко. На рисунке 1 показана сезонная структура потребления энергии в Соединённых Штатах.


Рисунок 1. Потребление энергии в США по месяцам года на основе данных Управления энергетической информации США. «Всё остальное» («All other») — это общая энергия, за вычетом электроэнергии и энергии на транспортировку. Включает природный газ, используемый для отопления домов. Сюда также входят нефтепродукты, используемые в сельском хозяйстве, а также ископаемое топливо всех видов, используемых в промышленных целях.

В отличие от модели, представленной в графике, производство солнечной энергии имеет наибольшую выработку в июне и падает до низких значений в декабре-феврале. Гидроэлектростанция имеет наибольшую выработку весной, но количество часто варьируется от года к году. Энергия ветра довольно переменна, как из года в год, так и из месяца в месяц.

Наша экономика не может справиться с многократными пусками и остановками электроснабжения. Например, температура должна оставаться постоянно высокой для плавления металлов. Лифты не должны останавливаться между этажами, когда отключается электричество. Охлаждение должно продолжаться, чтобы продукты оставались свежими в холодильнике.

Есть два подхода, которые можно использовать для решения сезонных проблем:
  1. Значительно перестроить энергетическую систему на основе возобновляемых источников энергии, чтобы обеспечить достаточное количество электроэнергии, особенно в периоды большой востребованности энергии, например, зимой.
  2. Построить большое количество дополнительных хранилищ, таких как аккумуляторы, для хранения электроэнергии в течение нескольких месяцев или даже лет, чтобы уменьшить прерывистость.
Любой из этих подходов чрезвычайно дорог. Такие затраты подобны добавлению ещё одного желудка в человеческий организм. И, насколько я знаю, они не были включены ни в одну модель на сегодня. Стоимость одного из этих подходов должна быть включена в любую модель, анализирующую затраты и выгоды от возобновляемых источников энергии, если есть намерение использовать возобновляемые источники энергии шире, чем незначительная доля от общего потребления энергии.

Рисунок 2 иллюстрирует высокую стоимость энергии, которая может возникнуть при добавлении значительного количества резервных батарей в энергосистему. В этом примере «чистая энергия», которую обеспечивает система, по существу почти полностью нивелируется резервными батареями.

В анализе «Возврат энергии при инвестировании в энергетику» (EROEI) сравнивается выход энергии с потреблением энергии. Это один из многих показателей, используемых для оценки того, обеспечивает ли устройство адекватную выходную мощность, чтобы оправдать затраты энергии.


Рисунок 2. Диаграмма динамической энергии Грэма Палмера с учётом батарей. Из «Энергия в Австралии»

Пример на рисунке 2 основан на схеме использования электроэнергии в Мельбурне, Австралия, где климат относительно мягкий. В примере используется комбинация солнечных панелей, батарей и дизельного резервного копирования.

Солнечные батареи и резервные батареи обеспечивают электроэнергию для 95% годового потребления электроэнергии, которое легче всего покрыть этими устройствами; дизельная генерация используется на оставшиеся 5%.

Пример на рисунке 2 можно перенастроить так, чтобы он был «только возобновляемым», добавив значительно больше батарей, множество солнечных батарей или их комбинацию. Эти дополнительные батареи и солнечные панели будут использоваться незначительно, в результате чего EROEI-системы снизится до ещё более низкого уровня.

Основная причина того, что электроэнергетическая система смогла избежать издержек, связанных с чрезмерной перестройкой или добавлением множества резервных аккумуляторов, — их малая доля в производстве электроэнергии. В 2018 году ветер составлял 5% мировой электроэнергии; солнечная составляла 2%. В процентах от мирового энергопотребления они составили 2% и 1% соответственно.

Вторая причина, по которой система электроснабжения смогла избежать проблем перебоев, заключается в том, что резервные поставщики электроэнергии (уголь, природный газ и атомная энергия) были вынуждены предоставлять резервные услуги без адекватной компенсации их стоимости.

Ветровой и солнечной энергии дают так называемые субсидии «идущим первыми». Такая практика создаёт проблему, поскольку поставщики резервного копирования несут существенные постоянные затраты и часто не получают адекватной компенсации.

Если будет какой-либо план прекратить использование ископаемого топлива, все эти резервные поставщики электроэнергии, в том числе ядерные, исчезнут. (Поставщики ядерной электроэнергии также зависят от ископаемого топлива.) Возобновляемые источники энергии должны будут существовать самостоятельно.

И вот тогда проблема прерывистости станет непреодолимой. Ископаемое топливо может храниться относительно недорого; затраты на хранение электроэнергии огромны. Они включают в себя как стоимость системы хранения, так и потерю энергии в хранилищах.

Фактически проблема недостаточного финансирования исходит от возобновляемых источников энергии и их права «идти первыми» — и становится непреодолимой в некоторых регионах. Огайо недавно решил предоставить субсидии поставщикам угля и атомной энергии в качестве способа решения этой проблемы. Огайо также сокращает финансирование возобновляемых источников энергии.

5. Стоимость утилизации ветряных турбин, солнечных батарей и накопителей должна быть отражена в смете расходов

Похоже, в энергетическом анализе распространено предположение, что каким-то образом в конце срока службы ветряные турбины, солнечные батареи и накопители для хранения энергии исчезнут без каких-либо затрат. Если они будут переработаны, стоимость переработки должна быть меньше, чем стоимость полученных материалов.

Но мы понимаем, что переработка не является бесплатной. Очень часто затраты энергии на переработку материалов выше, чем энергия, используемая при их добыче в первоначальном виде. Эту проблему необходимо учитывать при анализе реальной стоимости возобновляемых источников энергии.
6. Возобновляемые источники не могут напрямую заменить многие устройства и процессы, которыми мы располагаем сегодня

Это может привести к значительному снижению экономической эффективности и более продолжительному переходу на возобновляемые источники.

Существует длинный список вещей, которые не могут быть заменены возобновляемыми источниками энергии. Сегодня мы не можем производить ветряные турбины, солнечные батареи или строить гидроэлектростанции без ископаемого топлива. Это само по себе даёт понять, что систему ископаемого топлива необходимо будет поддерживать в течение по крайней мере следующих двадцати лет.

Есть много других вещей, которые мы не можем сделать с помощью одной только возобновляемой энергии. Сталь, удобрения, цемент и пластик — вот только некоторые примеры, которые Билл Гейтс упоминает в своём видео выше.

Таким образом, невозможно изготовить асфальт. Мы не можем проложить дороги (кроме каменных) или построить многие современные здания с использованием одних только возобновляемых источников энергии.

7. Вероятно, что переход на возобновляемые источники энергии займёт 50 или более лет

В течение этого времени ветер и солнечная энергия будут действовать как дополнения к системе ископаемого топлива, а не заменять её. Это также увеличит расходы.

Чтобы отрасли на базе ископаемого топлива продолжали работать, большую часть затрат на них придётся сохранить. Люди, работающие в сфере ископаемого топлива, должны получать оплату за труд круглый год, а не только тогда, когда электроэнергетика нуждается в резервной электроэнергии.

Ископаемому топливу требуются трубопроводы, нефтеперерабатывающие заводы и квалифицированный персонал. Компании, использующие ископаемое топливо, должны будут оплачивать свои долги, связанные с существующими объектами.

Если природный газ используется в качестве резервного для возобновляемых источников энергии, понадобятся резервуары для хранения его запасов на зиму, помимо трубопроводов. Даже если использование природного газа уменьшится, скажем, на 90%, затраты на него, вероятно, сократятся на гораздо меньший процент, поскольку большая доля затрат — фиксированная.

Одна из причин, по которой переход будет очень долгим, заключается в том, что во многих случаях даже нет понимания пути к переходу от ископаемого топлива.

Если необходимо внести изменения, то для облегчения этих изменений:
  • Необходимы предварительные условия и договорённости.
  • Затем эти решения необходимо проверить в реальных условиях.
  • Далее необходимы новые заводы, чтобы выпускать новые устройства.
  • Вполне вероятно, что потребуется какой-то способ заплатить существующим владельцам за потерю стоимости их существующих устройств, работающих на ископаемом топливе; в противном случае возникнут огромные долговые обязательства.
Только после того как все эти шаги будут осуществлены, переход действительно может произойти.

Косвенные затраты вызывают огромный вопрос о том, имеет ли смысл поощрять широкое использование ветра и солнца. Возобновляемые источники энергии могут сократить выбросы CO2, если они действительно заменяют ископаемое топливо при производстве электроэнергии. Если это в основном надстройки для системы, требующие больших затрат, возникает важный вопрос:

Имеет ли смысл переходить на использование ветра и солнца?

Действительно ли ветер и солнечная энергия предлагают более светлое будущее, чем ископаемое топливо?

Запасы ископаемого топлива ограничены. Это происходит из-за того, что цены на энергоносители не поднимаются достаточно высоко, чтобы мы могли извлечь из них больше. Цены на готовую продукцию, изготовленную за счёт ископаемого топлива, должны быть достаточно низкими, чтобы покупатели могли их себе позволить.

В противном случае покупки дискреционных товаров (например, автомобилей и смартфонов) упадут. Поскольку автомобили и смартфоны производятся с использованием сырья, включающего ископаемое топливо, более низкий «спрос» на эту готовую продукцию приведёт к падению цен на товары, включая цены на нефть. И в действительности, похоже, что с 2008 года большую часть времени происходит падение цен на нефть.


Рисунок 3. Средненедельная цена на нефть сорта Brent с учётом инфляции, основанная на спотовых ценах на нефть EIA и американском индексе потребительских цен.

Сложно понять утверждение, в котором говорится, что возобновляемые источники энергии будут работать дольше, чем ископаемое топливо. Если их не субсидировать, стоимость будет выше, чем у ископаемого топлива. И это будет лишь первым ударом по «зелёной» энергетике. Она также очень зависит от ископаемого топлива при изготовлении запасных частей и ремонте линий электропередач.

Интересно, что разработчики моделей изменения климата, похоже, убеждены в том, что в будущем может быть добыто очень большое количество ископаемого топлива. Вопрос о том, сколько ископаемого топлива действительно может быть извлечено, является ещё одной проблемой моделирования, которую необходимо тщательно изучить.

Объём будущей добычи, похоже, сильно зависит от того, насколько долго нынешняя экономическая система продержится в существующем виде. Без глобализации добыча ископаемого топлива, вероятно, быстро сократится.

У нас слишком много веры в модели и прогнозы?

Вопрос о том, оправданна ли ветровая энергия и солнечная, требует тщательного анализа. Обычная отличительная черта энергетического продукта, который имеет существенную выгоду для экономики, — его производство имеет тенденцию быть очень прибыльным.

При условии высокой прибыльности правительства могут облагать налогом производителей. Таким образом, прибыль может использоваться, чтобы помочь остальной экономике. Это одно из физических проявлений «чистой энергии», которую обеспечивает энергетический продукт.

Если бы ветер и солнечная энергия действительно обеспечивали существенную чистую энергию, им не требовались бы субсидии, даже субсидии «идущим первыми». Они бы отбрасывали прибыль, чтобы принести пользу остальной экономике. Возможно, возобновляемые источники энергии не так полезны, как думают многие. Возможно, исследователи слишком поверили в искаженные модели.

 

vertical horizon

Креатор
Регистрация
19 Мар 2022
Сообщения
21
Реакции
67
Мифы «зеленой энергетики»: Почему Россия укрепляет свою армию и при чем тут «чистая энергия»? - Юрий Подоляка

Кто ответит за выбросы «парниковых газов» раннего Средневековья? Думаю, никто. Между тем, вопрос этот очень и очень интересный. Ведь, если верить аргументам сторонников «альтернативной энергетики», ответить за это кто-то должен.
А между тем в этом виноват в т.ч. и Путин. Только не нынешний, а южноамериканский средневековый...

Мифы «зеленой энергетики» (2): «плесень на поверхности Земли», возомнившая себя Богом - Юрий Подоляка

ЧСВ это круто, мы многие страдаем этой болезнью. Но всему же есть предел. Тем более, что современная наука, полностью в соответствии с тезисом, что чем больше мы знаем, тем больше понимаем, что мы ничего не знаем, все-таки доказывает, что по крайней в мере в вопросе изменения климата мы … никто и звать нас никак.
 

Эврика

Креатор
Регистрация
15 Апр 2017
Сообщения
124
Реакции
538
41 неудобный факт о возобновляемой «зелёной» энергетике

Не проходит и недели, чтобы какой-нибудь мэр, губернатор, политик или ученый не предсказал бы новое энергетическое будущее, полностью основанное на использовании энергии ветра и солнца и на отказе от использования углеводородов, управляющих жизнью человечества на протяжении веков.

Однако физика, экономика энергии и просто реалии жизни дают понять, что в обозримом будущем места для "новой энергетической экономики" нет. В недавнем отчете Манхэттенского института "Новая энергетическая экономика: упражнение в магическом мышлении" приводится ряд доказательств этой точки зрения.

1. Углеводороды обеспечивают более 80% мировой энергии.

2. Снижение доли углеводородов в мировом потреблении энергии всего на 2 п. п. приведет к совокупным глобальным расходам на альтернативные варианты энергии за этот период, которые составят почти $2 трлн. Солнце и ветер сегодня обеспечивают менее 2% объемов мировой энергии.

3. Когда 4 млрд бедных людей в мире увеличат потребление энергии до одной трети европейского уровня на душу населения, мировой спрос вырастет на величину, которая будет вдвое больше общего объема потребления Америки.

4. К 2040 г. увеличение в 100 раз количества электромобилей до 400 млн приведет к снижению мирового спроса на нефть на 5%.

5. В течение 20 лет объемы использования возобновляемой энергии должны расшириться в 90 раз, чтобы заменить углеводороды. Для того чтобы мировая добыча нефти выросла всего в 10 раз, потребовалось полвека.

6. Чтобы заменить производство электроэнергии на основе углеводородов в США в течение следующих 30 лет, нужна будет программа строительства, которая позволит создать энергосистему в 14 раз быстрее, чем когда-либо в истории.

7. Если США откажутся использовать углеводороды для производства электричества, 70% объемов использования углеводородов в США останутся нетронутыми. Сейчас Америка потребляет 16% мировой энергии.

8. Эффективность увеличивает спрос на энергию за счет того, что продукты и услуги становятся дешевле: с 1990 г. глобальная энергоэффективность выросла на 33%, экономика - на 80%, а потребление энергии в мире - на 40%.

9. Эффективность повышает спрос на энергию: с 1995 г. потребление авиационного топлива на пассажиро-километр сократилось на 70%, объем воздушного движения вырос более чем в 10 раз, использование авиатоплива в мире увеличилось более чем на 50%.

10. Эффективность увеличивает спрос на энергию: с 1995 г. потребление энергии на байт сократилось в 10 тыс. раз, а объем мирового трафика данных вырос примерно в 1 млн раз; взлетел мировой объем использования электричества, необходимого при работе компьютерной техники.

11. С 1995 г. общий объем потребления энергии в мире вырос на 50%.

12. В целях безопасности и надежности в хранилищах страны должны оставаться запасы углеводородов, которые могли бы обеспечивать необходимые потребности страны в течение 2 месяцев. Сегодня все батареи общего назначения и аккумуляторы 1 млн электромобилей в США способны обеспечить только 2 часа национального спроса на электроэнергию.

13. Аккумуляторы, производимые ежегодно на заводе Tesla Gigafactory, могут обеспечить лишь 3 минуты ежегодного спроса на электроэнергию США.

14. Чтобы обеспечить достаточное количество аккумуляторов, которые удовлетворили бы спрос на электроэнергию в США на 2 дня, длительность производства Gigafactory должна составить 1 тыс. лет.

15. На эксплуатацию каждого произведенного самолета за $1 млрд в течение 20 лет нужно авиационное топливо стоимостью $5 млрд. Глобальные расходы на новые самолеты составляют более $50 млрд в год. И они еще растут.

16. Каждый $1 млрд, потраченный на центры обработки данных, приводит к использованию электроэнергии в течение 20 лет стоимостью $7 млрд. Глобальные расходы на центры обработки данных составляют более $100 млрд в год.

17. За 30 лет установки по выработке солнечной или ветровой энергии на сумму $1 млн дают 40 млн и 55 млн КВтч соответственно. Скважины стоимостью $1 млн, производящие сланцевую добычу нефти и газа, вырабатывают объем природного газа, способного дать 300 млн КВтч за 30 лет.

18. Строительство одной скважины на нефтяном или газовом месторождении или двух ветряных турбин стоит примерно одинаково: последние производят 0,7 баррелей нефти в час (эквивалентность энергии), скважина на месторождении сланцевого газа добывает 10 баррелей нефти в час.

19. Хранение барреля нефти или его эквивалента в природном газе обходится менее чем в $0,50, а хранение эквивалентной энергии барреля нефти в батареях обходится в $200.

20. В стоимостных оценках ветровой и солнечной энергии предполагается коэффициент мощности 41% и 29% соответственно. Реальные данные дают цифры на 10 п. п. меньше для обоих. Это означает, что за $3 млн будет произведено меньше энергии, чем предполагалось, в течение 20 лет службы ветротурбины за $3 млн мощностью 2 МВт.

21. Чтобы компенсировать эпизодическое использование энергии ветра/солнца, американские коммунальные службы используют двигатели, работающие на нефти и газе. С 2000 г. их использование стало в 3 раза больше, чем за 50 лет до этого.

22. Коэффициенты мощности ветропарка улучшились примерно на 0,7% в год. Этот небольшой показатель в основном достигается за счет сокращения числа турбин на акр, что приводит к росту средней площади земель, используемой для производства киловатт-часов, на 50%.

23. Более 90% электроэнергии в Америке и 99% энергии, используемой транспортом, поступают из источников, которые могут легко поставлять энергию для экономики в любое время, когда этого требует рынок.

24. Ветряные и солнечные установки вырабатывают энергию в среднем от 25% до 30% времени и только тогда, когда это позволяют природные условия. Обычные электростанции могут работать почти непрерывно.

25. Сланцевая революция снизила цены на природный газ и уголь — 2 вида топлива, которые производят 70% электроэнергии в США. Но тарифы на электроэнергию выросли на 20% с 2008 г. из-за прямых и косвенных субсидий на солнечную и ветряную энергию.

26. Трансформировать экономику энергии - это не то же самое, что несколько раз отправлять на Луну несколько человек. Это больше напоминает ситуацию, при которой на Луну будет отправлено все человечество. Причем навсегда.

27. Распространенное клише: сбои в энергетических технологиях повторят разрушения в цифровых технологиях. Но машины для производства информации и машины для производства энергии основаны на совершенно разных физических законах.

28. Если солнечную энергию представить себе в масштабах компьютерных технологий, "Эмпайр Стейт Билдинг" мог бы использовать одну солнечную батарею размером с почтовую марку. Но это возможно только в сказках.

29. Если батареи представить себе в масштабах цифровых технологий, батарея размером с книгу, которая стоит 3 цента, может привести в действие реактивный лайнер в Азию. И это тоже возможно только в сказках.

30. Если бы двигатели внутреннего сгорания можно было представить себе в масштабах компьютеров, автомобильный двигатель уменьшился бы до размеров муравья и произвел бы в 1 тыс. раз больше лошадиных сил; настоящие двигатели производят в 100 тыс. раз меньше энергии.

31. Увеличить в 10 раз солнечные технологии, представив их в цифровом форме, нельзя. Физический предел для солнечных элементов позволяет максимально преобразовать 33% фотонов в электроны, коммерческие ячейки - 26%.

32. То же самое касается 10-кратного увеличения технологий ветра в цифровом формате. Физический предел для ветряных турбин - это максимум 60% энергии в движущемся воздухе; коммерческие турбины дают 45%.

33. 10-кратное усиление батарей в цифровом формате отсутствует: максимальная теоретическая энергия в фунте нефти на 1500% превышает максимальную теоретическую энергию в фунте химикатов для батарей.

34. Для хранения энергетического эквивалента одного фунта углеводородов нужно около 60 фунтов батарей.

35. На каждый фунт изготовленной батареи нужно добыть, переместить и обработать 100 фунтов материалов.

36. Для хранения энергетического эквивалента одного барреля нефти, который весит 300 фунтов, требуется 20 тыс. фунтов батарей Тесла (стоимостью $200 тыс.).

37. Для перевозки энергетического эквивалента авиационного топлива, используемого самолетом, летящим в Азию, нужны аккумуляторы типа Тесла на $60 млн, в 5 раз больше этого самолета.

38. Для изготовления того количества батарей, которые могут хранить энергетический эквивалент 1 барреля нефти, нужен энергетический эквивалент 100 баррелей нефти.

39. Для создания аккумуляторов потребуется перерабатывать намного больше гигатонн земли, чтобы получить доступ к литию, меди, никелю, графиту, редкоземельным элементам, кобальту и т. д. И использовать миллионы тонн нефти и угля для добычи и для производства металла и бетона.

40. Китай доминирует в мировом производстве аккумуляторов с энергосистемой, на 70% работающей на угле: электромобили, использующие китайские аккумуляторы, произведут больше углекислого газа, чем будет сэкономлено за счет замены двигателей, работающих на нефти.

41. От вертолетов для регулярных трансатлантических путешествий не больше пользы, чем от использования ядерного реактора для питания поезда или фотоэлектрических систем для обеспечения электричеством населения.

 

Борщиндо

Креатор
Регистрация
3 Янв 2017
Сообщения
170
Реакции
698
Почему у «зелёной» энергетики сложное будущее?

Почти половина постов в нашем блоге в той или иной степени посвящена энергетике разной степени альтернативности и безальтернативности. Но чтобы строить реалистичные прогнозы о «зелёной» энергетике будущего, нужно знать ответы на неприятные вопросы. В этом посте мы сопоставим актуальные факты из области добычи и накопления электроэнергии, чтобы понять, почему мир не торопится переходить на экологичные возобновляемые источники энергии, и какие проблемы на пути «озеленения» ещё предстоит решить.

Все без исключения констатируют увеличение доли «зелёной» энергии в мире. С этим фактом не поспоришь: выработка солнечной и ветряной энергетики действительно растёт от года к году впечатляющими темпами. Значит ли это, что возобновляемые источники энергии уверенно вытесняют ископаемое топливо? Нет.

Не стоит забывать, что от года к году растёт не только зелёная энергетика, но и общемировое потребление электричества. Чтобы удовлетворить спрос, одних ВИЭ недостаточно, поэтому объёмы выработки наращивает и угольный, и газовый, и даже нефтяной сектор. То есть о развитии «зелёной» энергетики говорить можно, но о замещении ею основанной на ископаемом топливе за пределами особо прогрессивных европейских стран — нет.

Если взглянуть на выработку энергии всеми актуальными видами топлива, оказывается, что растёт отнюдь не только «зелёная» энергетика. Приводится расчёт в «тоннах нефтяного эквивалента» — эквиваленте энергии, получаемой из тонны нефти. Источник: BP Statistical Review of World Energy 2019

EROI — настоящая стоимость энергетики

При обсуждении проектов «зелёной» энергетики разработчики в качестве аргумента указывают низкую стоимость 1 кВт·ч, которая в некоторых случаях оказывается даже меньше цены киловатт-часа, выработанного угольной электростанцией. Если всё так, почему доля угля в генерации мировой электроэнергии до сих пор составляет 40%, а на пятки ему наступает не менее ископаемый газ?

Оценивать и сравнивать стоимость электричества, полученного различными способами, наиболее корректно с помощью показателя EROI (energy returned on energy invested) — отношения полученной энергии из источника к количеству энергии, затраченной на её получение. С помощью EROI можно наиболее точно оценить перспективы источника энергии в отличие от чисто теоретического КПД или скачущей от страны к стране цене 1 кВт·ч. Например, EROI 20:1 для некоего вида топлива значит, что с каждого затраченного кВт·ч можно выработать 20 кВт·ч.


График EROI для различных видов энергетики в США. Источник: Mrfebruar / Wikipedia

EROI для каждого вида выработки может сильно меняться во времени. Он зависит от технологий добычи и переработки, разведанных запасов и сложности добычи топлива, цен на оборудование и сам энергоноситель. В начале XX века, пока нефть была легкодоступна, EROI ее добычи составлял фантастические 1200:1, а сейчас балансирует на уровне 5:1 и продолжает медленно падать. Соотношение для угля поднималось до 75:1 и опускалось до 30:1, но, что поразительно, учёные прогнозируют пик угольного EROI на середину XXI века, когда соотношение может превысить 100:1.

Теоретически EROI топлива должен быть выше 1, чтобы его использование было целесообразным. На деле же при соотношении ниже 4:1 источник энергии приходится субсидировать, иначе его использование будет нерентабельным и очень дорогим. EROI чуть выше единицы допустим только для добывающих компаний, суть заработка которых состоит лишь в извлечении ресурса и его последующей продаже — нефтедобывающие компании устроит даже соотношение 1,1:1.

EROI традиционной энергетики

Приведенный выше график EROI для энергетической отрасли США за 2010 год очень красноречив и в целом справедлив для других стран. На недосягаемом олимпе эффективности безраздельно стоят гидроэлектростанции, чей EROI близок к 100:1. Строительство крупной ГЭС — очень затратное дело. Китайский комплекс «Три ущелья» обошелся бюджету Китая в $25,5 млрд, из которых только $9 млрд стоила сама станция. Но благодаря высочайшему EROI и установленной мощности 22,5 ГВт «Три ущелья» окупила себя через год после официального ввода в эксплуатацию или через четыре после запуска первой турбины.


Знакомьтесь, самая мощная электростанция в мире — ГЭС «Три ущелья» на реке Янцзы. Установленная мощность в 22,5 ГВт! Источник: Le Grand Portage / Wikipedia

Уголь, который сейчас кажется жутко архаичным и неимоверно грязным видом топлива, даже в Европе не собирается сдавать позиции как раз из-за высокого EROI порядка 30:1 (в США значительно выше). Удивительно, но европейским рекордсменом по объёмам потребления угля является… Германия. 61% закупаемого антрацита и 93% бурого угля в Европе идут именно на выработку электричества. При этом именно в Германии в прошлом году объем «зелёной» выработки превысил выработку от ископаемых источников. В конце 2019 года в Германии свою работу завершила Комиссия по отказу от угольной генерации, представив правительству планы и рекомендации по прекращению работы угольных электростанций к 2038 году. Сейчас в стране насчитывается 84 угольных станции, которые вынуждены сглаживать отказ от атомной генерации — к 2022 году Германия собирается закрыть все свои АЭС, хотя еще в 2000-х года на атомную энергию приходилась четверть генерации по стране.

Если уголь — очень грязное топливо, то природный газ гораздо экологичней, и именно он считается наиболее перспективным ископаемым топливом для электростанций будущего, причем его EROI в странах-импортерах составляет 20-30:1, а в газодобывающей России — не ниже 75:1, что делает газ привлекательным и востребованным. В большей степени, чем где бы то ни было, — в Германии, где отказ от угля и АЭС нужно срочно чем-то компенсировать и где одни лишь ВИЭ на это не способы.

«Зелёный» EROI

Теперь перейдем к EROI «зелёной» энергии — вот где пока всё действительно не очень весело. Проблема возобновляемых источников энергии заключается в их жёсткой привязанности к местности. Солнечные станции лучше работают недалеко от экватора, ветряные — на морском побережье, геотермальные — в зонах вулканической активности. При этом выработка на солнечных панелях прекращается ночью и сильно снижается зимой, ветряки отключают на период миграции птиц, а геотермальные станции хоть и эффективны, но их мощность чрезвычайно мала (десятки, в лучшем случае сотни МВт).

В теории ветряная энергия может быть очень дешевой и малозатратной в плане освоения, но пока один из самых лучших немецких морских (оффшорных) комплексов при установленной мощности 200 МВт дает EROI 16:1. И хотя на ветер приходится более 21% немецкой выработки, отрасль пребывает в стагнации — темп строительства новых ветряков за год упал на 80%, а мощность строящихся станций в 26 раз ниже теоретического годового прироста, который считается необходимым для стабильного замещения ископаемого топлива энергией ветра. Строгость законов и нежелание граждан иметь ветряки рядом со своими домами привели к тому, что рынок ветряной энергии в Германии достиг некоего предела, перешагнуть который будет очень непросто, — вся надежда на модернизацию генераторов с целью повышения их эффективности. Это, кстати, может понизить EROI ещё сильнее.


Мировые инвестиции в солнечную и ветроэнергетику в последнее десятилетие практически не меняются. Источник: International Renewable Energy Agency (IRENA), Frankfurt School-UNEP Centre/BNEF

Если ветроэнергетика в целом неплоха, хотя имеет свои нюансы и пределы, то с гелиоэнергетикой всё совсем тоскливо. Мы уже писали о причинах того, почему Солнце не стало универсальным источником бесконечной электроэнергии, хотя эффективные солнечные панели существуют уже более полувека. Из-за низкого КПД дешевых тонкопленочных панелей (6-8%) и необходимости строительства станций очень большой площади, а также из-за зависимости от времени суток и сезона EROI солнечной энергетики в Европе находится на абсолютно обескураживающем уровне: 1,6:1. Читатель Хабра провёл очень интересные расчеты для теоретической станции в солнечной американской Аризоне, одном из лучших мест для гелиоэнергетики, по результатам которых получил «сферический в вакууме» EROI 3,8:1.

К сожалению, с водородной энергетикой пока тоже не всё гладко. В качестве абсолютно экологичного портативного энергоносителя водород незаменим, но для его добычи приходится тратить уйму энергии, из-за чего EROI топливных ячеек ниже 2:1. Пока что единственным экономически эффективным способом добычи водорода для топливных ячеек является использование энергии Солнца или ветра. Мы уже рассказывали, как Toshiba изящно решила эту проблему своей мобильной электростанцией Toshiba H2One на топливных ячейках, которая сама для себя вырабатывает водород электролизом, получая энергию от солнечных панелей и аккумуляторов.

Необходимость хранения электроэнергии

Едва ли можно найти столь же нестабильный источник выработки электроэнергии, какими являются ветер и солнечный свет. При этом их генерация не зависит от объёма потребления в сети — ночью, пока город спит, ветрогенератор может отчаянно крутиться, вырабатывая максимум возможной мощности просто потому, что так подул ветер, а днём — в пик потребления — настанет штиль. Чтобы не терять излишки выработки и компенсировать её остановку по естественным причинам, энергию необходимо запасать. Для электростанций на ископаемом топливе ранее такой проблемы не стояло. Единственным адекватным и широкодоступным способом хранения электричества являются аккумуляторы.


Гидроаккумулирующие станции мы не берем в расчёт из-за их высокой цены и требовательности к рельефу местности. Это — схема маленькой ГЭС, закачивающей воду в аккумулирующий бассейн ночью и пропускающая её через генераторы днём. Мягко говоря, не самое простое и удобное решение. Источник: Донор / Wikipedia

Пока не существует универсального решения по накоплению больших объёмов электроэнергии в аккумуляторах. На небольших станциях, например, ветряках, можно обойтись массивом литий-ионных (литий-железо-фосфатных) батарей. Их энергоёмкость вдвое ниже, чем у массовых литий-кобальтовых аккумуляторов (120 Вт·ч/кг), но зато срок жизни составляет 2000 циклов зарядки-разрядки.

Другой разумный вариант — использование отслуживших аккумуляторов из электромобилей. Обычно потерявший 20% ёмкости аккумулятор требует замены, иначе пробег автомобиля от одной зарядки заметно снижается. Чтобы не заниматься дорогостоящей утилизацией ещё функционирующей батареи, её можно приспособить для хранения энергии от «зелёных» источников. Так поступили на стадионе «Йохан Кройф Арена» (54990–68000 зрителей) в нидерландском Амстердаме, который после перестройки в 2016–2018 годах стал полностью автономен в энергетическом плане. На крыше установлено 4200 солнечных панелей, которые накапливают энергию в 280 отслуживших аккумуляторов от Nissan Leaf. Тем не менее, стадион не полностью отказался от питания от городской сети — батареи помогают сгладить нагрузку во время вечерних событий, когда требуется сильное освещение. На одних лишь только аккумуляторах стадион бы не смог работать каждый вечер.

Накопление электроэнергии от ВИЭ в батареях для сглаживания пиков потребления и компенсации отсутствия выработки — звучит очень разумно. Но пока что не решена задача удешевления хранения энергии. Из-за стоимости аккумуляторов цена кВт·ч из «зелёных» источников вырастает в 3-4 раза, доходя до $0,45 (отчет Lazard, стр. 12). С этим можно справиться только созданием новых типов батарей: ёмких, выносливых, недорогих. О перспективных разработках в это области мы писали ранее.

Просьюмерство как способ сэкономить

Как решить проблему высокой стоимости накопленного в батареях кВт·ч от ВИЭ? Можно продавать образующиеся невостребованные излишки. Благодаря накоплению энергии появилось новое явление — просьюмерство. Антоним консьюмерству (потреблению), означающий продажу услуги её поставщику. Если проще, то речь идёт о продаже потребителем накопленной в батареях энергии обратно в сеть тем, кто в ней нуждается. Допустим, вы частное домохозяйство или небольшое предприятие, имеющее собственные источники генерации электроэнергии. Часть её потребляется, часть хранится в батарейных модулях. Если наблюдается переизбыток выработки, и лишнюю энергию в прямом смысле некуда девать, её можно продать в сеть, словно вы маленькая электростанция. Вернее, не маленькая, а виртуальная — мы писали о виртуальных электростанциях и участии Toshiba в формировании этого позитивного явления.

Уже сейчас Toshiba предлагает решение для управления батареей-хранилищем: система постоянно анализирует уровень потребления или выработки, выравнивая нагрузку на аккумулятор и подключая его в моменты пикового потребления гораздо быстрее, чем это можно сделать вручную. А в будущем система Toshiba получит функцию просьюмерства — автоматической продажи энергии в сеть. Источник: Toshiba

Самой заметной реализацией проекта виртуальной электростанции является Tesla Powerwall — домашняя батарея, питаемая от солнечной панели, емкостью 6,4-13,5 кВт·ч. Потребители могут не только запасаться дешевых электричеством из сети или «бесплатным» от Солнца, но и продавать его обратно в сеть с помощью онлайн-бирж. По всему миру было продано Powerwall с общей мощностью 300 МВт·ч.

В России также был утвержден «План мероприятий по стимулированию развития генерирующих объектов на основе возобновляемых источников энергии с установленной мощностью до 15 кВт» с аналогичным Tesla Powerwall смыслом, но законодательно процесс просьюмерства пока не прописан. Продажа излишков электричества поможет немного снизить стоимость потребления «зелёной» энергии. Но опять же всё упирается в стоимость аккумуляторов — на текущем этапе развития технологий срок их окупаемости приближается к 10 годам.

Будущее прекрасно, но далёко

Вообще-то мы не хотим сеять скептицизм относительно возобновляемых источников энергии и перехода на «зелёную» энергетику в целом. Нефть конечна, стоимость её добычи постоянно растет, а на одном газе и угле экологическую обстановку не поправить. Пока человечество не подчинило себе управляемый термоядерный синтез, придется вести самые активные разработки в области «зелёной» энергии. Это очень тернистый путь, состоящий из решения сложнейших проблем: экономических, технологических и даже социальных.

Лучшее, что можно сделать в такой ситуации — продолжать во что бы то ни стало исследования, пытаясь сделать солнечную, ветряную и геотермальную энергетику ещё эффективней и ещё доступней. Процесс идёт, прогресс не в тупике, и мир медленно, но уверенно отказывается от ископаемого топлива, пока его использование не стало слишком дорогим и опасным. И мы очень гордимся, что Toshiba принимает в этих делах самое активное участие, эффективно развивая все виды альтернативной энергетики.

 
Сверху Снизу