Эврика
Креатор
- Регистрация
- 15 Апр 2017
- Сообщения
- 124
- Реакции
- 543
В ближайшие несколько десятилетий мир изменится до неузнаваемости. И править им будет не тот, у кого много долларов, нефти или газа, а тот, кто умеет производить биороботов или продлевать жизнь.
Окружающая нас реальность радикально изменится в ближайшие несколько десятилетий. Не поймав "инновационную волну", Россия выпадет из обоймы мировых лидеров надолго, если не навсегда.
Итак, Анатолий Чубайс недавно оповестил российскую общественность о переходе к шестому технологическому укладу – хотя в «узких кругах» об этом заговорили еще в начале нулевых.
Напомним, что пятый уклад, формирование которого началось в середине 1980-х – это кремниевая микроэлектроника, информатика, биотех, генная инженерия. При этом технологическая «волна» была достаточно слабой – масштабы изменений радикально уступали предыдущим «пикам». Сравним, например, тридцатилетие между 1930-м и 1960-м, и такой же период между 1980-м и 2010-м. В первом случае за 30 лет появилось ядерное оружие, атомная энергетика, первые компьютеры и лазеры (а также масса менее бросающихся в глаза нововведений), был совершен выход в космос, получила распространение реактивная авиация...
Между 1980-м и 2010-м столь колоссального прогресса не было. Именно поэтому почти пропустившая пятый технологический уклад Россия/СССР не вылетела из обоймы мировых держав. Грядущий технологический скачок уже на старте выглядит намного более внушительным, а потому пропустить его будет смертельно опасно.
Посмотрим на основные направления шестого уклада.
В первую очередь, это появление принципиально новых материалов. Например, графен, углеродные и неуглеродные нанотрубки и композиты на их основе. Свойства материалов следующего поколения действительно впечатляют. Скажем, «бумага» из множества слоев графена в два раза тверже и в десять раз прочнее при растяжении, чем сталь. Распространятся и самозалечивающиеся материалы – например, избавляющиеся от трещин при облучении ультрафиолетом. Начнется более активное использование материалов, плотность которых сопоставима с плотностью воздуха или даже меньше при вполне пристойных механических характеристиках - это не только относительно традиционные аэрогели, но и «конструкции» (другого слова не подберешь) на металлической основе.
В области, где наблюдался бум во время предыдущего технологического скачка – электронике – неизбежна революция. Кремниевые технологии уже приблизились к своему теоретическому пределу, и закон Мура вместе с гонкой мегагерц на силиконовой основе неизбежно канут в Лету. Однако у кремния есть альтернатива – прежде всего, оптические процессоры (точнее, «гибридные» оптоэлектронные устройства).
Увязанная с электроникой/оптоэлектроникой робототехника также переживает период чрезвычайно быстрого прогресса. Хотя полноценный искусственный интеллект останется недостижимой мечтой в обозримом будущем, роботизированные системы «умнеют» достаточно быстро для того, чтобы найти весьма широкое применение. Так, в военной области эксперименты по созданию БПЛА с высокой степенью автономности зашли уже достаточно далеко. Другим отложенным эффектом электронного бума является появление более или менее практичных шагающих механизмов, незаменимых там, где требуется гипертрофированная проходимость. В «механической» части с ними увязан чрезвычайно быстрый прогресс в области создания экзоскелетов, уже перебравшихся со страниц фантастики в суровую реальность. А появление новых материалов открывает и здесь нетривиальные возможности (при помощи волокон из нанотрубок, кроме всего прочего, можно создать искусственные мышцы с впечатляющей «удельной мощностью»).
Общение с поумневшими оптоэлектронными собратьями обещает стать куда более плотным из-за быстрого прогресса в области исследований мозга и технологий считывания его активности. В первую очередь, это позволяет создать принципиально новые интерфейсы «машина-мозг». Компьютерные игры и некомпьютерные игрушки с элементарным «мозговым» управлением – уже реальность, а автомобили с «мысленным» управлением – испытываются. Аналогичные же технологии приведут к значительным успехам в области протезирования. Кстати, это может оказаться небесполезным и для вполне здоровых людей – как показывают эксперименты, исключительно высокая адаптивность человеческого мозга позволяет управлять дополнительными механическими руками вместо привычных двух.
Электроника в области робототехники постепенно скрещивается с биотехнологиями. По лабораториям уже перемещаются «аниматы» - роботы с мозгом на основе живых нейронов, например, крысиных (еще в начале «нулевых» набор этих нейронов довольно сносно управлял полетом на компьютерном симуляторе «Раптора»). По сути, мы наблюдаем «киборгизацию», которая развивается в двух направлениях – как по пути частичной «механизации» Хомо Сапиенс, так и по пути создания «аниматов».
Обратной стороной этого процесса является расширение возможностей по управлению биологическими объектами – от дистанционно управляемых жуков, выступающих в роли микробеспилотников, до американских пехотинцев. Последним вездесущая DARPA обещает шлемы с устройствами ультразвуковой транскраниальной стимуляции, позволяющей произвольно активировать нужные участки мозга, подавляя страх, боль, желание вздремнуть на посту или, наоборот, синдром гипербдительности. Расширяются и возможности «химических» манипуляций с мозгом (нейрофармакология быстро прогрессирует).
В области собственно биотехнологий прогресс также весьма быстр. Так, от традиционных генетических модификаций уже осуществлен переход к созданию организмов с полностью искусственным геномом (первая такая бактерия уже обитает в лабораторных чашках Петри). Полусинтетические хромосомы внедрены в клетки и более сложных, эукариотических организмов – дрожжей. Успехи в расшифровке генома позволяют перейти и к более «индивидуализированной» медицине и «превентивному» лечению генетически обусловленных заболеваний. Выращивание новых органов из клеток пациента – также область активных разработок. В реальности уже существуют искусственно выращенные сердце, печень, зубы, ткани головного мозга и т.д. Перспективными донорами могут стать «химерные» организмы. Другое приложение той же технологии – мясо из пробирки (первый образец «искусственной» свинины получен в 2009-м).
В некотором смысле с выращиванием органов конкурирует регенеративная медицина – инъекции стволовых клеток, например, применяются для восстановления роговицы. Ожидания участников SENS (кембриджский проект «Стратегия для проектируемого незначительного старения» - Strategies for Engineered Negligible Senescence), обещающих, что через 20 лет люди перестанут умирать естественной смертью благодаря комплексу новых биотехнологий, выглядят явно завышенными, однако заметное продление жизни может стать реальностью в достаточно обозримом будущем.
Не за горами и революция в «аэрокосмосе». Сейчас достаточно быстро развиваются гиперзвуковые технологии – например, существенные успехи демонстрируют гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД), способные разогнать летающую машину до 17 скоростей звука. Кроме всего прочего, они способны радикально облегчить вывод полезной нагрузки в космос, подняв ее и разогнав до 2/3 первой космической скорости в гораздо более экономичном режиме, чем традиционные химические ракетные двигатели. Из «заатмосферных» технологий можно отметить быстрый прогресс в области электроракетных (плазменных и ионных) двигателей. Реанимируются и «зависшие» на несколько десятилетий космические ядерные технологии. Лазерные ракетные двигатели (с дистанционным подводом энергии) перестают быть чисто теоретическими конструкциями.
Мощные лазеры за последнюю пару десятилетий прошли путь от чудовищных «аппаратов», использующих агрессивные и дорогостоящие химикаты, до на порядок более компактных и удобных в эксплуатации «орудий». Родственное направление – это СВЧ-излучатели. И СВЧ, и лазеры давно применяются в промышленности и средствах связи, а в будущем будут применяться еще активнее. Беспроводная передача энергии на основе лазерных или микроволновых технологий тоже переходит в практическую плоскость. Кроме того, лазерный термоядерный синтез является одним из наиболее перспективных путей к полноценному термояду.
Наконец, что немаловажно для России, традиционная углеродная энергетика в рамках шестого уклада заметно сдаст позиции. Произойдет увеличение доли атомной энергии – прежде всего, за счет «доведенных до ума» реакторов на быстрых нейтронах. Увеличит свою долю и энергетика альтернативная - так, еще недавно эффективность солнечных батарей не дотягивала до 10%, а сейчас на рынке уже появляются батареи с КПД, близким к 40%. При этом будущее солнечной энергетики демонстрирует причудливый «синкретизм» сразу нескольких технологических направлений – в частности, проводятся успешные опыты по созданию «наноструктурированных» батарей с помощью генетически запрограммированных вирусов.
Расширятся и возможности хранения энергии – пока речь идет, прежде всего, о водородной энергетике и литий-ионных аккумуляторах, емкость которых весьма быстро растет (новые технологии открывают возможности примерно десятикратного увеличения емкости). В перспективе, возможно, их потеснят батареи на другой основе – например, весьма нетрадиционные магний-серные или литиево-серные.
Увеличатся также возможности передачи энергии. Скажем, электрические кабели из углеродных нанотрубок по прочности сопоставимы с металлической проволокой, но при этом в шесть раз легче. По удельной проводимости нанотрубочные проводники намного опережают медь и серебро.
В целом же в ближайшие десятилетия, при переходе к шестому технологическому укладу, мир изменится примерно так же, как он изменился между 1940-м и 1970-м годом. В России доля технологий пятого уклада составляет примерно 10% (на Западе 30-40%), четвертого - 50%, третьего - 30%.
Окружающая нас реальность радикально изменится в ближайшие несколько десятилетий. Не поймав "инновационную волну", Россия выпадет из обоймы мировых лидеров надолго, если не навсегда.
Итак, Анатолий Чубайс недавно оповестил российскую общественность о переходе к шестому технологическому укладу – хотя в «узких кругах» об этом заговорили еще в начале нулевых.
Напомним, что пятый уклад, формирование которого началось в середине 1980-х – это кремниевая микроэлектроника, информатика, биотех, генная инженерия. При этом технологическая «волна» была достаточно слабой – масштабы изменений радикально уступали предыдущим «пикам». Сравним, например, тридцатилетие между 1930-м и 1960-м, и такой же период между 1980-м и 2010-м. В первом случае за 30 лет появилось ядерное оружие, атомная энергетика, первые компьютеры и лазеры (а также масса менее бросающихся в глаза нововведений), был совершен выход в космос, получила распространение реактивная авиация...
Между 1980-м и 2010-м столь колоссального прогресса не было. Именно поэтому почти пропустившая пятый технологический уклад Россия/СССР не вылетела из обоймы мировых держав. Грядущий технологический скачок уже на старте выглядит намного более внушительным, а потому пропустить его будет смертельно опасно.
Посмотрим на основные направления шестого уклада.
В первую очередь, это появление принципиально новых материалов. Например, графен, углеродные и неуглеродные нанотрубки и композиты на их основе. Свойства материалов следующего поколения действительно впечатляют. Скажем, «бумага» из множества слоев графена в два раза тверже и в десять раз прочнее при растяжении, чем сталь. Распространятся и самозалечивающиеся материалы – например, избавляющиеся от трещин при облучении ультрафиолетом. Начнется более активное использование материалов, плотность которых сопоставима с плотностью воздуха или даже меньше при вполне пристойных механических характеристиках - это не только относительно традиционные аэрогели, но и «конструкции» (другого слова не подберешь) на металлической основе.
В области, где наблюдался бум во время предыдущего технологического скачка – электронике – неизбежна революция. Кремниевые технологии уже приблизились к своему теоретическому пределу, и закон Мура вместе с гонкой мегагерц на силиконовой основе неизбежно канут в Лету. Однако у кремния есть альтернатива – прежде всего, оптические процессоры (точнее, «гибридные» оптоэлектронные устройства).
Увязанная с электроникой/оптоэлектроникой робототехника также переживает период чрезвычайно быстрого прогресса. Хотя полноценный искусственный интеллект останется недостижимой мечтой в обозримом будущем, роботизированные системы «умнеют» достаточно быстро для того, чтобы найти весьма широкое применение. Так, в военной области эксперименты по созданию БПЛА с высокой степенью автономности зашли уже достаточно далеко. Другим отложенным эффектом электронного бума является появление более или менее практичных шагающих механизмов, незаменимых там, где требуется гипертрофированная проходимость. В «механической» части с ними увязан чрезвычайно быстрый прогресс в области создания экзоскелетов, уже перебравшихся со страниц фантастики в суровую реальность. А появление новых материалов открывает и здесь нетривиальные возможности (при помощи волокон из нанотрубок, кроме всего прочего, можно создать искусственные мышцы с впечатляющей «удельной мощностью»).
Общение с поумневшими оптоэлектронными собратьями обещает стать куда более плотным из-за быстрого прогресса в области исследований мозга и технологий считывания его активности. В первую очередь, это позволяет создать принципиально новые интерфейсы «машина-мозг». Компьютерные игры и некомпьютерные игрушки с элементарным «мозговым» управлением – уже реальность, а автомобили с «мысленным» управлением – испытываются. Аналогичные же технологии приведут к значительным успехам в области протезирования. Кстати, это может оказаться небесполезным и для вполне здоровых людей – как показывают эксперименты, исключительно высокая адаптивность человеческого мозга позволяет управлять дополнительными механическими руками вместо привычных двух.
Электроника в области робототехники постепенно скрещивается с биотехнологиями. По лабораториям уже перемещаются «аниматы» - роботы с мозгом на основе живых нейронов, например, крысиных (еще в начале «нулевых» набор этих нейронов довольно сносно управлял полетом на компьютерном симуляторе «Раптора»). По сути, мы наблюдаем «киборгизацию», которая развивается в двух направлениях – как по пути частичной «механизации» Хомо Сапиенс, так и по пути создания «аниматов».
Обратной стороной этого процесса является расширение возможностей по управлению биологическими объектами – от дистанционно управляемых жуков, выступающих в роли микробеспилотников, до американских пехотинцев. Последним вездесущая DARPA обещает шлемы с устройствами ультразвуковой транскраниальной стимуляции, позволяющей произвольно активировать нужные участки мозга, подавляя страх, боль, желание вздремнуть на посту или, наоборот, синдром гипербдительности. Расширяются и возможности «химических» манипуляций с мозгом (нейрофармакология быстро прогрессирует).
В области собственно биотехнологий прогресс также весьма быстр. Так, от традиционных генетических модификаций уже осуществлен переход к созданию организмов с полностью искусственным геномом (первая такая бактерия уже обитает в лабораторных чашках Петри). Полусинтетические хромосомы внедрены в клетки и более сложных, эукариотических организмов – дрожжей. Успехи в расшифровке генома позволяют перейти и к более «индивидуализированной» медицине и «превентивному» лечению генетически обусловленных заболеваний. Выращивание новых органов из клеток пациента – также область активных разработок. В реальности уже существуют искусственно выращенные сердце, печень, зубы, ткани головного мозга и т.д. Перспективными донорами могут стать «химерные» организмы. Другое приложение той же технологии – мясо из пробирки (первый образец «искусственной» свинины получен в 2009-м).
В некотором смысле с выращиванием органов конкурирует регенеративная медицина – инъекции стволовых клеток, например, применяются для восстановления роговицы. Ожидания участников SENS (кембриджский проект «Стратегия для проектируемого незначительного старения» - Strategies for Engineered Negligible Senescence), обещающих, что через 20 лет люди перестанут умирать естественной смертью благодаря комплексу новых биотехнологий, выглядят явно завышенными, однако заметное продление жизни может стать реальностью в достаточно обозримом будущем.
Не за горами и революция в «аэрокосмосе». Сейчас достаточно быстро развиваются гиперзвуковые технологии – например, существенные успехи демонстрируют гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД), способные разогнать летающую машину до 17 скоростей звука. Кроме всего прочего, они способны радикально облегчить вывод полезной нагрузки в космос, подняв ее и разогнав до 2/3 первой космической скорости в гораздо более экономичном режиме, чем традиционные химические ракетные двигатели. Из «заатмосферных» технологий можно отметить быстрый прогресс в области электроракетных (плазменных и ионных) двигателей. Реанимируются и «зависшие» на несколько десятилетий космические ядерные технологии. Лазерные ракетные двигатели (с дистанционным подводом энергии) перестают быть чисто теоретическими конструкциями.
Мощные лазеры за последнюю пару десятилетий прошли путь от чудовищных «аппаратов», использующих агрессивные и дорогостоящие химикаты, до на порядок более компактных и удобных в эксплуатации «орудий». Родственное направление – это СВЧ-излучатели. И СВЧ, и лазеры давно применяются в промышленности и средствах связи, а в будущем будут применяться еще активнее. Беспроводная передача энергии на основе лазерных или микроволновых технологий тоже переходит в практическую плоскость. Кроме того, лазерный термоядерный синтез является одним из наиболее перспективных путей к полноценному термояду.
Наконец, что немаловажно для России, традиционная углеродная энергетика в рамках шестого уклада заметно сдаст позиции. Произойдет увеличение доли атомной энергии – прежде всего, за счет «доведенных до ума» реакторов на быстрых нейтронах. Увеличит свою долю и энергетика альтернативная - так, еще недавно эффективность солнечных батарей не дотягивала до 10%, а сейчас на рынке уже появляются батареи с КПД, близким к 40%. При этом будущее солнечной энергетики демонстрирует причудливый «синкретизм» сразу нескольких технологических направлений – в частности, проводятся успешные опыты по созданию «наноструктурированных» батарей с помощью генетически запрограммированных вирусов.
Расширятся и возможности хранения энергии – пока речь идет, прежде всего, о водородной энергетике и литий-ионных аккумуляторах, емкость которых весьма быстро растет (новые технологии открывают возможности примерно десятикратного увеличения емкости). В перспективе, возможно, их потеснят батареи на другой основе – например, весьма нетрадиционные магний-серные или литиево-серные.
Увеличатся также возможности передачи энергии. Скажем, электрические кабели из углеродных нанотрубок по прочности сопоставимы с металлической проволокой, но при этом в шесть раз легче. По удельной проводимости нанотрубочные проводники намного опережают медь и серебро.
В целом же в ближайшие десятилетия, при переходе к шестому технологическому укладу, мир изменится примерно так же, как он изменился между 1940-м и 1970-м годом. В России доля технологий пятого уклада составляет примерно 10% (на Западе 30-40%), четвертого - 50%, третьего - 30%.
Для просмотра скрытого содержимого вам нужно войти или зарегистрироваться.